
Eur. Phys. J. B 34, 285–292 (2003)
DOI: 10.1140/epjb/e2003-00224-2 THE EUROPEAN

PHYSICAL JOURNAL B

Front propagation under periodic forcing in reaction-diffusion
systems

E.P. Zemskov1,a, K. Kassner1, and S.C. Müller2

1 Institut für Theoretische Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
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Abstract. One- and two-component bistable reaction-diffusion systems under external force are considered.
The simplest case of a periodic forcing of cosine type is chosen. Exact analytical solutions for the traveling
fronts are obtained for a piecewise linear approximation of the non-linear reaction term. Velocity equations
are derived from the matching conditions. It is found that in the presence of forcing there exists a set
of front solutions with different phases (matching point coordinates ξ0) leading to velocity dependencies
on the wavenumber that are either monotonic or oscillating. The general characteristic feature is that
the nonmoving front becomes movable under forcing. However, for a specific choice of wavenumber and
phase, there is a nonmoving front at any value of the forcing amplitude. When the forcing amplitude is
large enough, the velocity bifurcates to form two counterpropagating fronts. The phase portraits of specific
types of solutions are shown and briefly discussed.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.20.Ma Interfacial instability –
47.54.+r Pattern selection; pattern formation

1 Introduction

Reaction-diffusion equations have become a prototype
for describing propagating wave behavior – from chemi-
cal waves to biological populations. Wave propagation in
these systems can be effectively controlled by application
of an external forcing [1–4]. This forcing can be prescribed
a priori (i.e., as a periodic modulation of excitability [2,3])
or computed on-line using the data of the momentary state
of the medium by closing a feedback loop [4,5]. The phe-
nomenology of this situation is well known. The properties
of an external forcing can be studied experimentally by us-
ing the light-sensitive Belousov-Zhabotinsky reaction for
which the absorption of transmitted light depends on the
concentration of chemical species [5].

Having in mind that a general irregular forcing may
be represented via Fourier decomposition as a superposi-
tion of harmonically oscillating “modes”, it is instructive
to investigate the wave behaviour under a periodically os-
cillating forcing. The case of a force oscillating with time
was examined in reference [2,3,6]. A “pulling effect” [6]
of the fronts was found: it was shown that the mean ve-
locity of the perturbed front is increased as compared to
that of the unperturbed front. Effectively, the case of time-
dependent forcing describes a time-dependent excitability,
i.e., a null-cline with periodically oscillating constants. In
our paper, we study another interesting case of periodic
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forcing, namely one that is nonmoving in the comoving
frame, i.e. traveling with the wave. This case differs in sig-
nificant ways from parameter-dependent (time or spatial)
forcings. The problem becomes an inhomogeneous one and
the general solution acquires an additive part. When the
wave speed is equal to zero the system degenerates into
the spatially forced one.

The basic evolution equations that describe the sim-
plest patterned structures (fronts and pulses) are nonlin-
ear PDEs of the parabolic type1. We will consider here
only front solutions (the pulse solutions will be studied
elsewhere). There is a fundamental difference between the
front propagation into a meta-stable state and into an
unstable state. In the first case the front has a unique
velocity. In the second case, there is a continuum of possi-
ble velocities [9]. An example of front propagation into
an unstable state is exhibited by the Fisher equation
with a quadratic nonlinear reaction term. In the case of
front propagation into a meta-stable state, the reaction-
diffusion equation has a cubic nonlinearity and corre-
sponds to a bistable model.

Our approach will be analytical rather than numerical.
This is possible because the nonlinear reaction term is a
piecewise linear function. Piecewise linear approximations
of the nonlinear term have been employed in a number of
situations [9–11] and have the advantage of being able to

1 Also there are models based on the PDEs of the hyperbolic
type [7,8].
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reduce existence problems for traveling waves to root find-
ing for certain nonlinear algebraic equations. The aim of
the present paper is the derivation of analytical solutions
for the front propagating under external forcing and the
determination of the velocity. We present here results that
have been obtained in the most general case of harmoni-
cally oscillating forcing and consider both one-component
and two-component models, as it is common knowledge
that two variables are necessary for the oscillatory and
bistable dynamics in the Belousov-Zhabotinsky reaction.
In the present report we restrict ourselves to N-systems
(bistable models) which are characterized by an inverted
N-shaped reaction term dependence with three zeros. Evi-
dently, the systems of the considered type are bistable and
the front solution connecting these two states is propagat-
ing into a meta-stable state.

2 One-component model

We use in our studies a general mathematical model de-
scribing bistable media in terms of a reaction-diffusion
equation, ∂u/∂t = f(u) + ∂2u/∂x2, where the vari-
able u(x, t) represents the concentration when the model
describes a chemical reaction and the rate function (reac-
tion term) f(u) characterizes the nonlinearity of the sys-
tem and has an inverted N-shaped profile. We use here a
piecewise linear approximation of this term, consisting of
two shifted linear pieces. To introduce a forcing f̄(x, t),
the equation is slightly modified as

∂u

∂t
= −u − 1 + 2θ(u − u0) + f̄(x, t) +

∂2u

∂x2
, (1)

where f̄(x, t) is the external forcing and θ(u − u0) is the
Heaviside function, u0 is the discontinuity point of the
null-cline f(u) = 0 (which would correspond to a point
of inflection in a model with a continuous nonlinear null-
cline). The aim of our considerations is a traveling wave
solution. So, we introduce the traveling frame coordinate
ξ = x− ct, where c is the front velocity, and rewrite (1) in
the form of traveling wave equation

uξξ + cuξ − u − 1 + 2θ(u − u0) + f̄(ξ) = 0 , (2)

where the subscripts on u denote derivatives. Here we con-
sider the case when the forcing f̄ is nonmoving in the
comoving frame, i.e., it is a function of only ξ. The sim-
plest case of the periodic forcing f̄(ξ) may be presented
by the following expression: f̄(ξ) = h cos(kξ). It is not
necessary for us to assume in the following that the oscil-
lations of the forcing are slow and the considered fronts
may be described to the needed accuracy within the adi-
abatic approximation [6]. We will find the wave solution
exactly.

The simplest particular case, the front wave, will be
our initial concern. Due to the two-piece structure of
the reaction term f(u), our solution must also consist
of two pieces. To construct the front solutions from two
pieces u1,2(ξ), we impose the boundary conditions at in-
finity and the matching conditions for functions and their

derivatives at some matching point ξ = ξ0, where the two
parts of the solution are patched together. An additional
(third) equation is obtained using the fact that we know
the u value of the matching point.

First, we write the general solution

u(ξ) =
2∑

i=1

Aieλiξ + ū(ξ) + u∗ , u∗ = const. , (3)

where the Ai are constants to be determined in each of
the regions u ≤ u0 and u ≥ u0; ū(ξ) is a particular so-
lution of the inhomogeneous equation; u∗ is the value of
the field at the two fixed points of the system to which
the solution u(ξ) without ū(ξ) must tend for ξ → ±∞
and λ1,2 = −c/2 ± √

c2/4 + 1 are the eigenvalues of the
homogeneous problem. We see that λ1 is positive and λ2

is negative. Hence the two-piece solution reads

u1(ξ) = A1eλ1ξ + ū(ξ) − 1 , ξ ≤ ξ0 ,
u2(ξ) = A2eλ2ξ + ū(ξ) + 1 , ξ ≥ ξ0 ,

(4)

where ū(ξ) = R cos(kξ) + Q sin(kξ) and R, Q = const. To
determine the constants R and Q we insert ū(ξ) into (2)
and collect the terms multiplied by cos(kξ) and sin(kξ).
The result is

R = h
k2 + 1

(k2 + 1)2 + c2k2
, Q = −h

ck

(k2 + 1)2 + c2k2
· (5)

Hence the constant R is always positive when h > 0 and
negative when h < 0. The sign of Q depends on the com-
bination of parameters hck and Q vanishes when one of
these parameters is equal to zero. In the case of constant
forcing (k = 0), the particular solution reduces to a con-
stant with R = h and Q = 0.

The unknown constants A1,2 may be determined and
explicitly expressed as functions of the null-cline parame-
ter u0 and the front velocity c from the matching condi-
tions. From these conditions we can also obtain the front
velocity the same way as in previous work [12], first reduc-
ing the number of equations from three to one by express-
ing the constants of integration in terms of the as yet un-
known velocity. Then we obtain the velocity equation. In
previous works, we chose the matching point value ξ0 equal
to zero. However now, in the presence of the ξ-dependent
forcing, the translation invariance of the model equation
is violated and the magnitude of the matching point coor-
dinate ξ0 cannot be chosen arbitrarily or rather, the front
solution depends on this value ξ0, i.e., we have a family of
front solutions with different ξ0. The form of the two-piece
solution (4) remains the same, the ξ0-dependence appears
in the velocity equation

c = [u0 − R cos(kξ0) − Q sin(kξ0)](λ1 − λ2) . (6)

We see that the ξ0-dependence is present only in the forc-
ing terms (R, Q-terms). The exponential terms with ξ0

which arose in the matching equations were eliminated
during the reduction procedure. From the velocity equa-
tion (6) it follows also that the constant (k = 0) external
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forcing acts on the velocity behaviour in the same way
as a non-zero value of u0. Also, in this case, translational
invariance is restored. Therefore, we may put u0 = 0 for
simplicity and just consider the influence of a truly oscil-
latory forcing.

Let us consider a set of possible solutions. It is instruc-
tive to deal with some particular cases. A first particular
case (case I) is when kξ0 = 2πn, n = 0,±1,±2, ... 2. In
this case the Q-term vanishes and we obtain

c + R(λ1 − λ2) = 0. (7)

As λ1 �= λ2, the velocity is equal to zero only when R = 0,
i.e., there is no nonmoving solution (stationary front) in
the presence of forcing. Using the expressions for R and λi,
the velocity equation can be rewritten as

c[c2k2 + (k2 + 1)2] + h(k2 + 1)
√

c2 + 4 = 0 . (8)

This equation has only one real solution, both other roots
are imaginary. The equation remains the same under a
change of sign of k. This is not surprising, because the
R-term is coupled with the cosine function. In the case of
constant forcing (k = 0), the velocity equation reduces to
c + h

√
c2 + 4 = 0 which has only a real root at |h| < 1.

By taking the square of the reduced equation, we obtain
c2/4 = h2/(1−h2) and then the restriction |h| < 1 (which
is mathematically evident) may be explained in physical
terms using the fact that the constant external forcing
acts on the velocity the same way as a shifted value of the
discontinuity point u0. Recall that without forcing but an
asymmetric null-cline the velocity equation remains the
same on replacing h → −u0 (see Eq. (2.2.13) in [9]). In
this system, the condition |u0| < 1 means that the u0-
point (the point at which there is a jump discontinuity
of the null-cline) lies within the interval between the two
fixed points, i.e., this restriction represents an existence
condition for front solutions. The non-zero value of veloc-
ity at constant forcing is understood by considering the
null-cline f(u) + f̄ = −u∓ 1 + f̄ = 0. The introduction of
the external forcing produces a shift along the f(u)-axis,
changing the symmetric null-cline f(u) = −u∓ 1 = 0 into
an asymmetric one. Then the propagating front has non-
zero velocity. When u0 = 0, the front propagates always
at non-zero velocity at h �= 0 and when u0 �= 0, there are
values of h and u0 for which the front velocity is equal to
zero. From equation (8), it also follows that under external
forcing a nonmoving front becomes movable; the velocity
is equal to zero only when h = 0. The sign of the velocity
is determined by the sign of the parameter h: when h is
positive, the velocity is negative and vice versa.

The velocity diagrams c = c(h), k fixed, and c = c(k),
h fixed, at u0 = 0 (which corresponds to a function f(u)
with inversion symmetry about u = 0) are shown in Fig-
ure 1. We see that the influence of oscillations on the ve-
locity behaviour for the k dependence is monotonically
decreasing: the greater the wavenumber k, the smaller the
velocity in absolute magnitude (Fig. 1a). This effect may

2 Here we must note that ξ0 may be large but finite, be-
cause it is necessary for the construction of the boundary and
matching conditions.
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Fig. 1. Velocity behaviour for the one-component model in
the case of the symmetric (u0 = 0) null-cline when ξ0 = 0:
(a) k-dependence and (b) h-dependence.

be explained using the fact that when oscillation is fast,
the system “feels” only its average and then it does not
cause a big effect and the velocity tends to zero. When
k → 0, the velocity tends to a constant value such that
the smaller is the amplitude of the forcing, the smaller
is this constant. The h-dependence of the velocity is pre-
sented graphically in Figure 1b. The corresponding curve
is slightly different from a straight line: the larger the
wavenumber k, the closer is the curve to a straight line.
This follows directly from the approximation of equation
(8) for large k: c � −2h/k2. And once again, as h changes
sign, the front velocity reverses its sign as well. It is per-
tinent to note here that the influence of the oscillations
(k �= 0) on the velocity behaviour, as illustrated in Fig-
ure 1, is similar to a damping: if we consider a simple
damped (at ξ → ±∞) forcing with pulse-shaped profile
of the piecewise exponential type f̄(ξ) = h exp(−k|ξ|) in-
stead of oscillating forcing, the k-dependence will show a
similar behaviour.

The second particular case (case II) is when kξ0 =
π/2 + 2πn, n = 0,±1,±2, ... . In this case the R-term
vanishes and we have the following velocity equation

c + Q(λ1 − λ2) = 0 (9)

or, rewritten in the full form,

c[c2k2 + (k2 + 1)2] − hck
√

c2 + 4 = 0 . (10)
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Just as equation (8), this can be turned into a cubic equa-
tion for c2, but in distinction from the former equation this
one has the solution c = 0 (nonmoving front)3. This solu-
tion is valid at any value of the forcing amplitude h and for
the specific choice of the wavenumber k = (π/2+2πn)/ξ0.
When the velocity is equal to zero, the “traveling” peri-
odic forcing degenerates into a spatially periodic one. Both
other roots may be imaginary or also real in contrast with
equation (8). When the wavenumber k or amplitude h
becomes negative, there is only the trivial real solution
(c = 0). Under a simultaneous change of signs of k and h,
the equation (10) remains the same. The set of roots is
most readily visualized with the aid of specific values of
the phase ξ0 and the wavenumber k. When we choose
ξ0 = π/2, k = 1 and eliminate the solution c = 0, equa-
tion (10) reduces to (c2 + 4) − h

√
c2 + 4 = 0. Hence the

velocity c = ±√
h2 − 4 (for positive h) tends to infinity

as the amplitude of forcing grows and tends to zero when
h → 2.

The velocity diagrams c = c(k) and c = c(h) de-
scribed by equation (6) at ξ0 = π/2 are shown in Figure 2.
The velocity versus wavenumber dependence (c = c(k),
Fig. 2a) has an oscillating behaviour around c = 0 axis,
so that the velocity may now become positive and neg-
ative. However, the decreasing (at growing k) behaviour
remains the same as in the case I. The velocity versus am-
plitude dependence (c = c(h), Fig. 2b) shows a bifurcation
by which a pair of counterpropagating fronts forms. The
bifurcation is perfect at k = 1 (this case is determined
by (10)) and imperfect when the wavenumber is different
from but near k = 1. The critical value of the amplitude
is hcrit = (k2 + 1)2/2k.

For the nonmoving front the external forcing is only
spatially dependent, so that here the pinning effect [13]
is reproduced, meaning that under a steady, spatially pe-
riodic forcing the velocity of the front may be zero. Pin-
ning is however not perfect at wavenumbers different from
k = 1 (at ξ0 = π/2+2πn). Figure 2b shows that at k = 0.8
the front does not have exactly zero velocity for small h,
so it is not strictly pinned but keeps “creeping” at a small
velocity instead. When the velocity is equal to zero, the
constants Q = 0 and R = h/(k2 + 1) �= 0 and the par-
ticular solution of the inhomogeneous equation contains
only a cosine part. In the case II there is no situation with
constant forcing because kξ0 �= 0.

Note that the curve for h = 3 in Figure 2a becomes
multivalued below k ≈ 1.1, due to the bifurcation to three
solutions (appearing in Fig. 2b at h = 2 for k = 1 and at
h ≈ 3.6 for k = 0.8). Below k ≈ 0.9 (and above k ≈ 1.1),
it returns to single-valuedness.

In the other particular cases, when kξ0 = π + 2πn
(case III) and kξ0 = 3π/2 + 2πn, n = 0,±1,±2, ...
(case IV) the velocity equation remains the same as in the
cases I and II, respectively, with the replacement h → −h.
Without this replacement, in the case III the velocity
changes the sign as compared with the case I. However,
the front curves are slightly different in all four cases. The

3 From equation (6) it follows that the front is nonmoving
only when cos(kξ0) = 0 (at u0 = 0).
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Fig. 2. Velocity behaviour (one-component model with sym-
metric null-cline) when ξ0 = π/2: (a) k-dependence and (b)
h-dependences with k = 1 and k = 0.8 are denoted by thick
and thin lines, respectively.

distinctions between them are clearly visible in the phase
portraits which are presented in Figure 3. The forcing pa-
rameters, h and k, are the same for all four diagrams. The
cases I (Fig. 3a) and III (Fig. 3c) have the opposite veloc-
ities and the phase diagrams are asymmetric and change
from one curve to another under replacement u → −u.
The difference takes place also in the front profile. When
the velocity is negative (case I), the front u(ξ) moves from
u = 1 to u = −1 (from right to left in the u − du/dξ or
ξ − u planes). Therefore, when the front runs, the oscilla-
tion corresponding to the asymmetric loop near u = 0.5
in Figure 3a is behind the front. A similar situation holds
when the velocity is positive (case III, Fig. 3c). This effect
is the same as one in the case of oscillating fronts in the
two-component model without forcing [14]. In the cases II
(Fig. 3b) and IV (Fig. 3d), the front is nonmoving and the
phase diagrams are symmetric (but not similar) about the
0 − du/dξ axis. This means also that the front profile in
the ξ − u plane is symmetric under rotation by 180 de-
grees around the coordinate origin. From all these curves,
it will be obvious that the differences in front structure
are significant only in the middle interfacial zone of (ξ, u)
and when |ξ| is large the curve has just a loop around
corresponding fixed point in the phase plane.
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Fig. 3. Phase portrait (one-component model with symmetric null-cline) when (a) ξ0 = 0 (c ≈ −0.9), (b) ξ0 = π/2 (c = 0),
(c) ξ0 = π (c ≈ 0.9) and (d) ξ0 = 3π/2 (c = 0). The forcing parameters are h = k = 1.

For the considered one-component system, an ade-
quate explanation of the origin and multiplicity of solu-
tions can be obtained with a known particle-in-a-potential
analogy [9]. This analogy is based on the identification of
the equation (2) with the equation of motion of a classical
particle with friction (c is a friction coefficient) in a poten-
tial

∫
f(u) du which oscillates with time ξ due to an addi-

tional part (forcing) f̄(ξ). One identifies u(ξ) with a spa-
tial coordinate and f(u) with the negative force, derived
from the potential. The potential is piecewise parabolic
and has a double-hill shape. The front solution u(ξ) is
equivalent to the motion of the particle when at time
ξ = ±∞ the particle is located in the maxima at u = ±1
and at ξ = ξ0 passes through a minimum at u = u0. Using
the replacement ξ → ξ − ξ0 in the equation (2) we find
that the particle will pass through the minimum always
at ξ = 0. However, then the forcing in the model equa-
tion (2) becomes ξ0-dependent f̄(ξ) = h cos[k(ξ − ξ0)].
Therefore the solution of the inhomogeneous problem is
ū(ξ) = R cos[k(ξ − ξ0)] + Q sin[k(ξ − ξ0)], i.e., there exists
a set of solutions u(ξ) with different phases ξ0. In the ab-
sence of periodic forcing, the ξ0-dependence vanishes and
all solutions are the same.

The appearance of the ξ0-dependence in the solutions
is not a particular feature of the piecewise linear approx-
imation. It is well-known that the solution of the non-
linear equation uξξ + u − u3 = 0 (corresponding to our
model at c = 0 and f̄(ξ) = 0) has a front solution
u(ξ) = ± tanh[(ξ − ξ0)/

√
2], where ξ0=const. is the center

of the wave. Due to translational invariance all solutions
with variable ξ0 are similar. But when this invariance is

violated (by inserting f̄(ξ)-term in the equation) the so-
lutions become different.

3 Two-component model

In this section, we extend our investigations to the case
of a two-component system. We would like to recall here
again that two variables are necessary for the oscillatory
dynamics in the Belousov-Zhabotinsky reaction. Indeed,
as we saw, there are no oscillations in the homogeneous
one-component model without external forcing. But in the
two-component model it is possible to observe oscillat-
ing fronts. The mathematical origin of these oscillations
is that there are imaginary values for λ (see Eq. (2.8)
in [12]); in the one-component model we have only real λ.
Spatial oscillations in the one-component model may ex-
ist in hyperbolic reaction-diffusion systems [8]. Thus, the
system considered in this section consists of two scalar
fields u(x, t) and v(x, t) and is described by the equations

∂u

∂t
= f(u, v)+f̄(x, t)+

∂2u

∂x2
,

∂v

∂t
= εg(u, v)+

∂2v

∂x2
, (11)

with reaction terms f(u, v) = −αu − 1 + 2θ(u) − v and
g(u, v) = u−v. Here θ(u) is the Heaviside function and ε, α
are positive constants. This is one of the simplest one-
dimensional bistable reaction-diffusion systems involving
one activator and one inhibitor. A homogeneous version
of this model with nondiffusing inhibitor v(x, t) was used
by Rinzel and Keller [15] as the mathematical description
of the excitation and propagation of nerve impulses. The
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case of equal diffusion coefficients considered in our work
is also of importance for activator-inhibitor systems, as the
diffusion constants are very close to each other for the re-
actants of widely studied chemical reaction-diffusion sys-
tems such as the Belousov-Zhabotinsky reaction [16–18].
The parameter ε is the ratio of the time scales associated
with the two fields and has generic significance in that
1/ε measures the ratio of excitation rate to recovery rate.
Most studies of the reaction-diffusion systems consider the
case ε 
 1, where the activator concentration u(x, t) is the
fast variable and that of the inhibitor the slow one. In this
paper we do not impose any restriction on the value of ε.

Now we have two traveling wave equations

uξξ + cuξ + f(u, v) + f̄(ξ) = 0 ,
vξξ + cvξ + εg(u, v) = 0 (12)

and two boundary conditions (at ξ → ±∞) for the acti-
vator field u(ξ) and two conditions for the inhibitor field
v(ξ). There are five matching conditions: three equations
for the u(ξ)-field (with the additional equation) which are
the same as in the one-component case and two equations
for the v(ξ)-field. There is no additional equation for the
v(ξ)-field, because the matching point in the u − v plane
is uniquely determined by fixing the u-coordinate4. The
general solutions are expressed now as superpositions of
four exponentials

u(ξ) =
4∑

i=1

Aieλiξ+ū(ξ)+u∗, v(ξ) =
4∑

i=1

Bieλiξ+v̄(ξ)+v∗,

(13)
where Ai, Bi are constants, u∗ = v∗ = ∓1/(α + 1) =
∓s=const. The minus and plus signs of s correspond to
the first or the second pieces of the front solution, re-
spectively. The constants Bi may be expressed through
constants Ai. These expressions will be given below. The
four eigenvalues λi are

λ1,2 =

− c/2 +
√

c2/4 + (ε + α)/2 ±
√

(ε + α)2/4 − ε(α + 1) ,

λ3,4 =

− c/2 −
√

c2/4 + (ε + α)/2 ±
√

(ε + α)2/4 − ε(α + 1) .

(14)

Ito and Ohta [11] obtained an exact solution for a mo-
tionless case and a propagating-pulse solution in the large
inhibitor diffusion coefficient approximation. We consider
here the system with equal diffusion constants. In this sit-
uation all solutions are exact.

The front solutions (13) are valid only for some values
of ε and α. As indicated above, there exists a range of ε
and α where the λi become complex: when ε−im < ε < ε+

im,
where ε±im = α + 2 ± 2

√
α + 1, the λi have an imagi-

nary part, the solutions u(ξ) and v(ξ) contain cosine and

4 The change of the v-coordinate initiates the variation of
the speed.

sine terms and the fronts present a damped oscillating be-
haviour. However, the distinction between monotonic and
oscillating fronts for the model without forcing is only in
the front profile, also it may be shown that the velocity
equation is the same for both front types,5 and we sup-
pose that the same situation is given in the model with
forcing. Therefore, we restrict our consideration here only
to the case of real eigenvalues.

Introducing (13) into (12), one can express the con-
stants Bi through Ai: Bi = (λ2

i + cλi − α)Ai, i = 1, ..., 4.
Using (14), we obtain

B1,3 = [(ε − α)/2 +
√

(ε − α)2/4 − ε]A1,3 ,

B2,4 = [(ε − α)/2 − √
(ε − α)2/4 − ε]A2,4 .

(15)

Thus, we have 5 unknown constants (A1, ..., A4 and c)
and 5 matching conditions. To obtain the front solutions
from two pieces, we take into account the signs of λi. We
consider the case when ε and α are positive. Hence λ1,2 >
0 and λ3,4 < 0, and front solutions are of the “2+2”-type
(a sum of two exponentials at ξ ≤ ξ0 is patched together
with a sum of two others at ξ ≥ ξ0) 6:

u1(ξ) = A1eλ1ξ + A2eλ2ξ + ū(ξ) − s ,

v1(ξ) = B1eλ1ξ + B2eλ2ξ + v̄(ξ) − s ,
(16)

u2(ξ) = A3eλ3ξ + A4eλ4ξ + ū(ξ) + s ,

v2(ξ) = B3eλ3ξ + B4eλ4ξ + v̄(ξ) + s .
(17)

Thus, the first pieces of these solutions u1, v1 contain ex-
ponentials that grow with increasing ξ, whereas the sec-
ond pieces u2, v2 contain exponentials decaying with grow-
ing ξ. The particular solutions read

ū(ξ) = R1 cos(kξ) + Q1 sin(kξ),

v̄(ξ) = R2 cos(kξ) + Q2 sin(kξ).
(18)

The expressions of Ri, Qi, i = 1, 2 are

R1 = h[kα(k2
0 + k2

ε) + εkε]/∆,

Q1 = −hk0(k2
0 + k2

ε − ε)/∆,

R2 = εh(kαkε + ε − k2
0)/∆,

Q2 = −εhk0(kα + kε)/∆,

(19)

where kα = k2 + α, kε = k2 + ε, k0 = ck and ∆ =
(kαkε+ε−k2

0)
2+k2

0(kα+kε)2. Hence, R1 is always positive
when h > 0, whereas the other constants may be positive
or negative. In the case of constant forcing (k = 0), the
constants Qi are equal to zero and R1 = R2 = h.

The velocity equation is derived from the matching
conditions as it was done above in the one-component

5 For the homogeneous model this was shown in refer-
ence [12].

6 It is interesting to note that this kind of solutions is still
valid at small negative α (α > −1). In this case the product
ε(α + 1) remains positive and the front solutions are of the
“2+2”-type.
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Fig. 4. Bifurcation diagram c = c(ε) for the two-component
model with symmetric null-cline f(u, v) = 0 when ξ0 = 0 at
h = 0.1, k = 1 and α = 1.

case. But now this equation is more involved and we do
not present the formula here. The resulting equation is so
complicated that we do not attempt to solve it analyti-
cally – instead, we give, as a figure, some representative
solution diagram obtained numerically for specific values
of the parameters. The graphical representation of the ve-
locity equation for the case I (when kξ0 = 0) is illustrated
in Figure 4. The velocity diagram c = c(ε) for fixed null-
cline and forcing parameters (h, k and α are fixed) shows a
pitchfork bifurcation, which has been referred to in the lit-
erature as a non-equilibrium Ising-Bloch bifurcation [19].
We see that under forcing this bifurcation becomes im-
perfect and the nonmoving front transforms to a moving
one. The curve depends, of course, on the forcing parame-
ters: the smaller is the wavenumber k, the more imperfect
becomes the bifurcation. For k → 0, there exists a limit-
ing case of imperfect pitchfork at each forcing amplitude
h �= 0. A similar imperfect bifurcation takes place in the
system without forcing but with non-symmetric (u0 �= 0)
null-cline f(u, v) [12] or in the system with symmetric null-
cline and under an external field (as example, an electrical
field) [14]. Thus, we can construct our system such that
both factors (forcing and field) will approximatively com-
pensate each other.

In Figure 5, we give examples of the front solutions
for the case I in the form of the u-v diagram (phase por-
trait) for a small ratio of the time scales ε (fast activator
and slow inhibitor, Fig. 5a) and for large ε (Fig. 5b). In
both cases, the other model parameters (h, k and α) are
the same. In reference [12], it was shown that in the sys-
tem without forcing the front curve at large ε tends to the
null-cline g(u, v) = 0 (in the case of the nonmoving front).
Now the phase portraits show that in the case of small
ε the line has zig-zag character, whereas at large ε the
curve has loops around both fixed points. The origin of
this is due to the fact that the oscillations of the inhibitor
v(ξ) at large ε are more pronounced, than the ones at
small ε. This fact is associated with the expressions of R
and Q: the parameters R2, Q2 (and hence v1,2(ξ)) have
a factor ε, whereas R1, Q1 (and hence u1,2(ξ)) have not
(see Eqs. (19)). However, the loop vanishes in the cases II
and IV when the front velocity is equal to zero. Thus, the
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Fig. 5. Front solutions in the form of the u-v diagram (phase
portrait) when ξ0 = 0 for (a) small (ε = 0.1) and (b) large
(ε = 1) ratio of the time scales ε. The forcing parameters are
h = k = 1 and the null-cline slope α = 4.

nonmoving fronts exist also in the two-component model.
At kξ0 = 0 we have fronts with negative velocities. At
other values of kξ0 the velocity may be positive or zero. A
pair of fronts with opposite signs of velocity are arranged
symmetrically about the origin in the u-v plane. The front
velocity does not vary strongly under changes of the pa-
rameter ε (in Figs. 5a and 5b): in case (a) the velocity is
c ≈ −3.9 and in case (b) c ≈ −3.96. In summary, we would
like to note that the ū(ξ), v̄(ξ) solutions remain the same
under the simultaneous changing of signs of the wavenum-
ber k and the velocity c. This is true for all the cases I-IV.

4 Conclusion

In conclusion, we investigated the possibility to control
the evolution of front waves by introducing external peri-
odic forcing. Exact analytical solutions for the front prop-
agating under forcing were obtained for one-dimensional
piecewise linear reaction-diffusion systems and the corre-
sponding velocity equations were derived. A simple form
of the periodic force ∝ cos(kξ) was used. An analysis of
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forced reaction-diffusion equations predicts sets of possi-
ble solutions (fronts with positive, negative and zero ve-
locities). These solutions are distinguished by their phases
(matching point coordinates ξ0) according to which the ve-
locity versus wavenumber dependences (as it was shown
for the one-component model) are monotonic or oscillat-
ing. For specific wavenumber and phase choice there is a
nonmoving front at any value of the forcing amplitude.
When the amplitude is large enough the velocity bifur-
cates to form two counterpropagating fronts. In the two-
component case the velocity diagram shows an imperfect
Ising-Bloch bifurcation (at zero phase). We investigated
the behaviour of the fronts and found that the oscillations
due to forcing are present in the phase portrait of the two-
component system, too. In the phase diagram there exist
loops around both fixed points. For the two-component
model these loops vanish (degenerate into lines) when the
front velocity is equal to zero or when the model parame-
ter ε is small. In the one-component case the loops don’t
vanish when the speed is equal to zero.

We do not compare here the oscillations due to forc-
ing and the oscillations in response to system parame-
ters (ε and α), because in the last case the oscillations
are damped. However, in the case of a damped periodic
forcing ∝ exp(∓pξ) cos(kξ) it may be shown that the
parameter-dependent oscillations have larger wavelength
than the forcing oscillations. Near the resonance (when
λ ≈ p + ik, i2 = −1), there is no significant front pro-
file change. In the case of the one-component model, it
was pointed out that when one considers a simple damp-
ing forcing ∝ exp(∓ξ) (at zero phase) the dependences of
the wavenumber on velocity and the amplitude on veloc-
ity have similar behaviour as in the case of the oscillating
forcing. Therefore, we think that it would be interesting to
investigate the system under a δ function forcing, which is
a limiting case of a pulse-like force. Due to the δ function
in the activator equation the front solution for u(ξ) will
have a bend, which originates from a jump in the matching
condition for the derivative du(ξ)/dξ.

The external forcing consideration works very well. In
reference [20] another type of forcing, presented as spatial
inhomogeneities f̄(x), was analyzed to describe a bifurca-
tion of front dynamics. The case of pure temporal forcing,
f̄(t) was considered in references [6,21]. However, when
traveling wave solutions are examined, it makes no sig-
nificant difference whether temporal f̄(t) or spatial f̄(x)
external forcing is employed, because in both cases we
have the same null-cline with time- or space- dependent
parameters which indicate zeros of the rate function f(u).
Therefore, the “traveling forcing” f̄(ξ) considered in our
article becomes a subject of much specific interest.

In this paper, one-dimensional models have been con-
sidered. A generalization of these models to the two-
dimensional case runs into problems when specifying
boundary and matching conditions for fronts in the two-
dimensional plane. Solutions of two-dimensional piecewise
linear equations do not satisfy the conditions necessary
for smooth concatenation [22]. In our opinion, further in-
vestigations of a forced reaction-diffusion system may be

required towards the modeling of the front dynamics in a
medium with different diffusivities of the two components.
In the symmetry-breaking spatial differentiation leading
to the formation of patterns, the ratio between the diffu-
sion rates of the activator and inhibitor plays an important
role [23]. It is known that sharp wavefronts are very stable
to lateral distortions, as long as the ratio of diffusion con-
stants of inhibitor to activator is not too large [24]. This
case requires more detailed studies and will be discussed
elsewhere.

The authors thank V.S. Zykov for introduction into the prob-
lem, the anonymous referee for questions and comments and
acknowledge support by the DFG, grant FOR 301/2-1 (3) in
the framework of a research plan on “Interface dynamics in
pattern forming processes”.
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